Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on Physicochemical Properties, Cytokine Induction, and Efficacy
نویسندگان
چکیده
Formulation of short interfering RNA (siRNA) into multicomponent lipid nanoparticles (LNP) is an effective strategy for hepatic delivery and therapeutic gene silencing. This study systematically evaluated the effect of polyethylene glycol (PEG) density on LNP physicochemical properties, innate immune response stimulation, and in vivo efficacy. Increased PEG density not only shielded LNP surface charge but also reduced hemolytic activity, suggesting the formation of a steric barrier. In addition, increasing the PEG density reduced LNP immunostimulatory potential as reflected in cytokine induction both in vivo and in vitro. Higher PEG density also hindered in vivo efficacy, presumably due to reduced association with apolipoprotein E (ApoE), a protein which serves as an endogenous targeting ligand to hepatocytes. This effect could be overcome by incorporating an exogenous targeting ligand into the highly shielded LNPs, thereby circumventing the requirement for ApoE association. Therefore, these studies provide useful information for the rational design of LNP-based siRNA delivery systems with an optimal safety and efficacy profile.
منابع مشابه
Effect of different mass ratio of PLA: PEG segments in PLA-PEG-PLA copolymers on the physicochemical characterization and DNA release profile
Background: Adapting controlled release technologies to the delivery of DNA has the great potential to overcome extracellular barriers that limit gene delivery. This study investigates the effect of different mass ratio of PLA: PEG in the various tri block poly (lactic acid)-poly (ethylene glycol) - Poly (lactic acid) copolymer (PLA-PEG-PLA) on the properties of the resulting nanoparticles. Me...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake
Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA coul...
متن کاملElucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery.
Because nanoparticles with diameters less than 50nm penetrate stromal-rich tumor tissues more efficiently, the synthesis of small-sized nanoparticles encapsulating short interfering RNA (siRNA) is important in terms of realizing novel siRNA medicine for the treatment of various cancers. Lipid nanoparticles (LNPs) are the leading systems for the delivery of siRNA in vivo. Limit size LNPs were su...
متن کاملMultiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery.
Nanoparticle-mediated siRNA delivery is a complex process that requires transport across numerous extracellular and intracellular barriers. As such, the development of nanoparticles for efficient delivery would benefit from an understanding of how parameters associated with these barriers relate to the physicochemical properties of nanoparticles. Here, we use a multiparametric approach for the ...
متن کاملNovel Solid Lipid Nanoparticles for Oral Delivery of Oxyresveratrol: Effect of the Formulation Parameters on the Physicochemical Properties and in vitro Release
Novel solid lipid nanoparticles (SLNs) were developed to improve oral bioavailability of oxyresveratrol (OXY). The SLNs were prepared by a high speed homogenization technique, at an effective speed and time, using Compritol 888 ATO (5% w/w) as the solid lipid. The appropriate weight proportions (0.3% w/w) of OXY affected the physicochemical properties of blank SLNs. The effects of surfactant ty...
متن کامل